Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.673
1.
Methods Mol Biol ; 2807: 271-283, 2024.
Article En | MEDLINE | ID: mdl-38743235

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
3.
Front Biosci (Landmark Ed) ; 29(4): 136, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38682184

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder characterized by aberrant amyloid precursor protein (APP) cleavage, pathological aggregations of beta-amyloid (Aß) that make up Aß plaques and hyperphosphorylation of Tau that makes up neurofibrillary tangles (NFTs). Although progress has been made in research on AD, the fundamental causes of this disease have not been fully elucidated. Recent studies have shown that vascular dysfunction especially the loss of pericytes plays a significant role in the onset of AD. Pericytes play a variety of important roles in the nervous system including the regulation of the cerebral blood flow (CBF), the formation and maintenance of the blood-brain barrier (BBB), angiogenesis, and the clearance of toxic substances from the brain. Pericytes participate in the transport of Aß through various receptors, and Aß acts on pericytes to cause them to constrict, detach, and die. The loss of pericytes elevates the levels of Aß1-40 and Aß1-42 by disrupting the integrity of the BBB and reducing the clearance of soluble Aß from the brain interstitial fluid. The aggravated deposition of Aß further exacerbates pericyte dysfunction, forming a vicious cycle. The combined influence of these factors eventually results in the loss of neurons and cognitive decline. Further exploration of the interactions between pericytes and Aß is beneficial for understanding AD and could lead to the identification of new therapeutic targets for the prevention and treatment of AD. In this review, we explore the characterization of pericytes, interactions between pericytes and other cells in the neurovascular unit (NVU), and the physiological functions of pericytes and dysfunctions in AD. This review discusses the interactions between pericytes and Aß, as well as current and further strategies for preventing or treating AD targeting pericytes.


Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Pericytes , Pericytes/metabolism , Alzheimer Disease/metabolism , Humans , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Animals , Brain/metabolism
4.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38682199

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Pericytes , Pulmonary Fibrosis , Pericytes/pathology , Pericytes/metabolism , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Transforming Growth Factor beta/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Wnt Signaling Pathway
5.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Article En | MEDLINE | ID: mdl-38563133

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Fibroblasts , Fibrosis , Pericytes , RGS Proteins , Pericytes/metabolism , Pericytes/pathology , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , RGS Proteins/deficiency , Fibroblasts/metabolism , Fibroblasts/pathology , Mice , Cells, Cultured , Aging/metabolism , Aging/pathology , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Male , Coculture Techniques
6.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683849

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Brain , Cell Differentiation , Pericytes , Transcription Factors , Zebrafish Proteins , Zebrafish , Pericytes/metabolism , Pericytes/cytology , Animals , Zebrafish/metabolism , Zebrafish/embryology , Zebrafish/genetics , Brain/metabolism , Brain/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neural Crest/cytology , Mesoderm/metabolism , Mesoderm/cytology , Signal Transduction , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics
7.
J Clin Invest ; 134(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38487999

Allergic asthma generally starts during early life and is linked to substantial tissue remodeling and lung dysfunction. Although angiogenesis is a feature of the disrupted airway, the impact of allergic asthma on the pulmonary microcirculation during early life is unknown. Here, using quantitative imaging in precision-cut lung slices (PCLSs), we report that exposure of neonatal mice to house dust mite (HDM) extract disrupts endothelial cell/pericyte interactions in adventitial areas. Central to the blood vessel structure, the loss of pericyte coverage was driven by mast cell (MC) proteases, such as tryptase, that can induce pericyte retraction and loss of the critical adhesion molecule N-cadherin. Furthermore, spatial transcriptomics of pediatric asthmatic endobronchial biopsies suggests intense vascular stress and remodeling linked with increased expression of MC activation pathways in regions enriched in blood vessels. These data provide previously unappreciated insights into the pathophysiology of allergic asthma with potential long-term vascular defects.


Asthma , Mast Cells , Humans , Child , Animals , Mice , Mast Cells/pathology , Pericytes/metabolism , Endothelial Cells/metabolism , Asthma/pathology , Lung/pathology , Allergens , Pyroglyphidae , Disease Models, Animal
8.
Brain Res ; 1832: 148849, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38452844

The present study focused on whether hypoxia-inducible factor-1alpha (HIF-1α) and platelet-derived factor-beta (PDGF-ß) are involved in the crosstalk between brain microvascular endothelial cells (BMECs) and brain vascular pericytes (BVPs) under ischaemic-hypoxic conditions. Mono-cultures or co-cultures of BVPs and BMECs were made for the construction of the blood-brain barrier (BBB) model in vitro and then exposed to control and oxygen-glucose deprivation (OGD) conditions. BBB injury was determined by assessing the ability, apoptosis, and migration of BVPs and the transendothelial electrical resistance and horseradish peroxidase permeation of BMECs. Relative mRNA and protein levels of HIF-1α and PDGF-ß, as well as tight junction proteins ZO-1 and claudin-5 were analyzed by western blotting, reverse transcription quantitative PCR, and/or immunofluorescence staining. Dual-luciferase reporter assays assessed the relationship between PDGF-ß and HIF-1α. Co-culturing with BMECs alleviated OGD-induced reduction in BVP viability, elevation in BVP apoptosis, and repression in BVP migration. Co-culturing with BVPs protected against OGD-induced impairment on BMEC permeability. OGD-induced HIF-1α upregulation enhanced PDGF-ß expression in mono-cultured BMECs and co-cultured BMECs with BVPs. Knockdown of HIF-1α impaired the effect of BMECs on BVPs under OGD conditions, and PDGFR-ß silencing in BVPs blocked the crosstalk between BMECs and BVPs under OGD conditions. The crosstalk between BMECs and BVPs was implicated in OGD-induced BBB injury through the HIF-1α/PDGF-ß signaling.


Endothelial Cells , Oxygen , Brain/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Pericytes/metabolism , Proteins/metabolism
9.
Chem Biol Interact ; 393: 110939, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38490643

Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.


Cisplatin , Ototoxicity , Mice , Animals , Male , Cisplatin/pharmacology , Cisplatin/metabolism , Pericytes/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , Ototoxicity/metabolism , Mice, Inbred C57BL , Oxidative Stress , Apoptosis
10.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493151

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Pericytes/metabolism , Pericytes/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Angiogenesis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Cell Movement , Cell Line, Tumor , Cell Proliferation
11.
Methods Mol Biol ; 2783: 25-33, 2024.
Article En | MEDLINE | ID: mdl-38478224

Perivascular cells represent an in vivo counterpart of mesenchymal stromal/stem cells that populate the outer layer of blood vessels. Pericytes in capillaries and microvessels and adventitial cells of large arteries and veins give rise to stem/progenitor cells when isolated and cultured in vitro. These cells have been considered candidate cell types for cell therapy. Adipose tissue, being highly vascularized, dispensable, and easily accessed, is a viable option to obtain perivascular cells for use in research and in clinical trials. Here, we describe our established protocol to extract perivascular cells from human fat through fluorescence-activated cell sorting, which allows for the isolation of defined populations of progenitor cells with high reproducibility.


Mesenchymal Stem Cells , Humans , Flow Cytometry , Reproducibility of Results , Mesenchymal Stem Cells/metabolism , Pericytes/metabolism , Adipose Tissue , Cell Differentiation
12.
Biomed Pharmacother ; 174: 116436, 2024 May.
Article En | MEDLINE | ID: mdl-38508081

In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.


Antigens, CD19 , Cell Movement , Glioblastoma , Induced Pluripotent Stem Cells , Killer Cells, Natural , Pericytes , Receptors, Chimeric Antigen , Tumor Microenvironment , Pericytes/metabolism , Pericytes/pathology , Humans , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Antigens, CD19/metabolism , Antigens, CD19/immunology , Animals , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Induced Pluripotent Stem Cells/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Mice , Xenograft Model Antitumor Assays
13.
J Immunother Cancer ; 12(2)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413223

BACKGROUND: Targeting of solid cancers with chimeric antigen receptor (CAR)-T cells is limited by the lack of suitable tumor-specific antigens and the immunosuppressive, desmoplastic tumor microenvironment that impedes CAR-T cell infiltration, activity and persistence. We hypothesized that targeting the endosialin (CD248) receptor, strongly expressed by tumor-associated pericytes and perivascular cancer-associated fibroblasts, would circumvent these challenges and offer an exciting antigen for CAR-T cell therapy due to the close proximity of target cells to the tumor vasculature, the limited endosialin expression in normal tissues and the lack of phenotype observed in endosialin knockout mice. METHODS: We generated endosialin-directed E3K CAR-T cells from three immunocompetent mouse strains, BALB/c, FVB/N and C57BL/6. E3K CAR-T cell composition (CD4+/CD8+ ratio), activity in vitro against endosialin+ and endosialin- cells, and expansion and activity in vivo in syngeneic tumor models as well as in tumor-naive healthy and wounded mice and tumor-bearing endosialin knockout mice was assessed. RESULTS: E3K CAR-T cells were active in vitro against both mouse and human endosialin+, but not endosialin-, cells. Adoptively transferred E3K CAR-T cells exhibited no activity in endosialin knockout mice, tumor-naive endosialin wildtype mice or in wound healing models, demonstrating an absence of off-target and on-target/off-tumor activity. By contrast, adoptive transfer of E3K CAR-T cells into BALB/c, FVB/N or C57BL/6 mice bearing syngeneic breast or lung cancer lines depleted target cells in the tumor stroma resulting in increased tumor necrosis, reduced tumor growth and a substantial impairment in metastatic outgrowth. CONCLUSIONS: Together these data highlight endosialin as a viable antigen for CAR-T cell therapy and that targeting stromal cells closely associated with the tumor vasculature avoids CAR-T cells having to navigate the harsh immunosuppressive tumor microenvironment. Further, the ability of E3K CAR-T cells to recognize and target both mouse and human endosialin+ cells makes a humanized and optimized E3K CAR a promising candidate for clinical development applicable to a broad range of solid tumor types.


Neoplasms , Receptors, Chimeric Antigen , Humans , Mice , Animals , Pericytes/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , T-Lymphocytes/metabolism , Mice, Knockout , Tumor Microenvironment , Antigens, Neoplasm/metabolism , Antigens, CD/metabolism
14.
Discov Med ; 36(181): 308-322, 2024 Feb.
Article En | MEDLINE | ID: mdl-38409836

BACKGROUND: Pericytes (PCs), the critical components of vessels, are implicated in wound repair. This study aimed to explore the roles of PCs in wound healing and angiogenesis. METHODS: Skin PCs and human dermal microvascular endothelial cells (HDMECs) were isolated from patients' upper eyelid skin. Immunofluorescence staining was used to characterize the morphology of PCs. Tube formation and transwell chemotaxis assays were performed to explore PC's tube-forming capability and chemotaxis. Finally, we investigated the effects of PCs and endothelial cells on wound repair using skin wound of a rat model. RESULTS: Skin PCs exhibited a double-protrusion structure and characteristic antigen expression of neural/glial antigen 2 (NG2)+/platelet-derived growth factor receptor-ß (PDGFR-ß)+/alpha-smooth muscle actin (α-SMA)+/CD31-. Skin PCs could directly form lumen-like structures in a two dimensional (2D) culture environment, and mild hypoxia and starvation promoted the lumen-like structure formation. Furthermore, skin PCs quickly formed more stable lumen-like structures than HDMECs in matrigel, and they recruited HDMECs in a three dimensional (3D) culture environment. Transwell chemotaxis assay showed that PCs and HDMECs were chemotactic to each other. PCs could develop lumen-like structures in the skin wounds of rat models. The number of PCs mounted in wounded skin was compared to normal skin. The ratio of PCs to endothelial cells gradually increased after skin injury and reached its maximum on the 3rd day. CONCLUSIONS: Skin PCs have an excellent tube-forming capability and chemotaxis to endothelial cells. PCs might promote wound repair by recruiting endothelial cells.


Endothelial Cells , Pericytes , Humans , Rats , Animals , Pericytes/metabolism , Chemotaxis , Skin , Wound Healing/physiology
15.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38378000

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Pericytes/metabolism , Carcinoma, Renal Cell/pathology , Methionine/metabolism , Racemethionine/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Kidney Neoplasms/pathology , Neoplastic Stem Cells/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism
16.
Exp Neurol ; 375: 114728, 2024 May.
Article En | MEDLINE | ID: mdl-38365134

The pericytes (PCs) surrounding capillaries are vital regulators of capillary constriction. Persistent PC contraction results in the increased capillary constriction, therefore leading to the impaired cerebral blood flow (CBF) recovery after reperfusion and worsening the clinical outcomes in stroke patients. However, the potential determinants of PC functions during ischemia/reperfusion are poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit Delta (PIK3CD/PI3Kδ) is a crucial factor involved with neuronflammation during ischemic stroke. PI3Kδ has shown the expression in PCs, while its effect on PC functions has not been explored yet. In this study, a rodent ischemia/reperfusion model was established in C57BL/6 mice via transient middle cerebral artery occlusion and reperfusion (MCAO/R). The PI3Kδ expression in ischemic penumbra was remarkably upregulated following MCAO/R induction. PI3Kδ inhibitor CAL-101 improved the CBF recovery, ischemic brain injury, and suppressed capillary constriction in MCAO/R mice. Besides, the production of tumor necrosis factor alpha (TNF-α), an inducer for tissue injury, and the expression of transient receptor potential vanilloid type 2 (TRPV2), a channel protein permitting calcium (Ca2+) uptake, were significantly reduced in ischemic penumbra after CAL-101 treatment. In vitro, oxygen-glucose deprivation and reoxygenation (OGD/R) enhanced the expression of PI3Kδ and TRPV2 in primary mouse PCs. CAL-101 suppressed the TNF-α-induced TRPV2 expression in OGD/R-treated PCs, thus inhibiting the Ca2+ uptake and PC contraction. Collectively, this study suggests that PI3Kδ is a critical regulator of PC function during ischemic stroke.


Brain Injuries , Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Animals , Humans , Mice , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Pericytes/metabolism , Reperfusion , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha
17.
J Alzheimers Dis ; 99(s2): S281-S297, 2024.
Article En | MEDLINE | ID: mdl-38393902

Background: A strong body of evidence suggests that cerebrovascular pathologies augment the onset and progression of Alzheimer's disease (AD). One distinctive aspect of this cerebrovascular dysfunction is the degeneration of brain pericytes-often overlooked supporting cells of blood-brain barrier endothelium. Objective: The current study investigates the influence of pericytes on gene and protein expressions in the blood-brain barrier endothelium, which is expected to facilitate the identification of pathophysiological pathways that are triggered by pericyte loss and lead to blood-brain barrier dysfunction in AD. Methods: Bioinformatics analysis was conducted on the RNA-Seq expression counts matrix (GSE144474), which compared solo-cultured human blood-brain barrier endothelial cells against endothelial cells co-cultured with human brain pericytes in a non-contact model. We constructed a similar cell culture model to verify protein expression using western blots. Results: The insulin resistance and ferroptosis pathways were found to be enriched. Western blots of the insulin receptor and heme oxygenase expressions were consistent with those observed in RNA-Seq data. Additionally, we observed more than 5-fold upregulation of several genes associated with neuroprotection, including insulin-like growth factor 2 and brain-derived neurotrophic factor. Conclusions: Results suggest that pericyte influence on blood-brain barrier endothelial gene expression confers protection from insulin resistance, iron accumulation, oxidative stress, and amyloid deposition. Since these are conditions associated with AD pathophysiology, they imply mechanisms by which pericyte degeneration could contribute to disease progression.


Alzheimer Disease , Blood-Brain Barrier , Endothelial Cells , Pericytes , Pericytes/metabolism , Pericytes/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Endothelial Cells/metabolism , Coculture Techniques , Brain/metabolism , Brain/pathology , Cells, Cultured , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Gene Expression Regulation , Insulin Resistance/physiology
18.
Am J Respir Cell Mol Biol ; 70(5): 400-413, 2024 May.
Article En | MEDLINE | ID: mdl-38301267

Newborns with intrauterine growth restriction (IUGR) have a higher likelihood of developing pulmonary arterial hypertension (PAH) in adulthood. Although there is increasing evidence suggesting that pericytes play a role in regulating myofibroblast transdifferentiation and angiogenesis in malignant and cardiovascular diseases, their involvement in the pathogenesis of IUGR-related pulmonary hypertension and the underlying mechanisms remain incompletely understood. To address this issue, a study was conducted using a Sprague-Dawley rat model of IUGR-related pulmonary hypertension. Our investigation revealed increased proliferation and migration of pulmonary microvascular pericytes in IUGR-related pulmonary hypertension, accompanied by weakened endothelial-pericyte interactions. Through whole-transcriptome sequencing, Ddx5 (DEAD-box protein 5) was identified as one of the hub genes in pericytes. DDX5, a member of the RNA helicase family, plays a role in the regulation of ATP-dependent RNA helicase activities and cellular function. MicroRNAs have been implicated in the pathogenesis of PAH, and microRNA-205 (miR-205) regulates cell proliferation, migration, and angiogenesis. The results of dual-luciferase reporter assays confirmed the specific binding of miR-205 to Ddx5. Mechanistically, miR-205 negatively regulates Ddx5, leading to the degradation of ß-catenin by inhibiting the phosphorylation of Gsk3ß at serine 9. In vitro experiments showed the addition of miR-205 effectively ameliorated pericyte dysfunction. Furthermore, in vivo experiments demonstrated that miR-205 agomir could ameliorate pulmonary hypertension. Our findings indicated that the downregulation of miR-205 expression mediates pericyte dysfunction through the activation of Ddx5. Therefore, targeting the miR-205/Ddx5/p-Gsk3ß/ß-catenin axis could be a promising therapeutic approach for IUGR-related pulmonary hypertension.


Cell Proliferation , DEAD-box RNA Helicases , Epigenesis, Genetic , Fetal Growth Retardation , Glycogen Synthase Kinase 3 beta , Hypertension, Pulmonary , MicroRNAs , Pericytes , Rats, Sprague-Dawley , Animals , Female , Humans , Male , Rats , beta Catenin/metabolism , beta Catenin/genetics , Cell Movement/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Pericytes/metabolism , Pericytes/pathology
20.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article En | MEDLINE | ID: mdl-38339125

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Cardiomyopathies , Intramolecular Oxidoreductases , Lipocalins , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Disease Models, Animal , Mast Cells/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism , Pericytes/metabolism
...